PERENNIALS

S E R I E S

Herbaceous Perennials: Plant Growth Retardants

by MIKE OLRICH, DAVID JOERIGHT, ROYAL HEINS, ERIK RUNKLE, and ART CAMERON

Eight control is an important aspect of forcing herbaceous perennials because many species are quite tall when they bloom, which can make them difficult and expensive to manage and ship. Therefore, plant height must be controlled during production. Although there are several cultural and environmental strategies available to control a plant’s height, growth retardants often prove to be the most reliable for many perennial species. Some plant species simply do not respond to certain growth retardants, while others may be sensitive to every common chemical. As perennials become more popular and new species make their way into the market, a lack of data on each growth retardant’s effectiveness presents a problem for...
PERENNIALS
SERIES

growers trying to avoid using chemicals that do not work on a particular crop.

At Michigan State University (MSU), each year we select perennial species and test the effectiveness of the most commonly used growth retardants on each species. Our goal is to determine effectiveness, not specific rates of each growth retardant. However, the relative response to each chemical, at the rates we apply, provide a starting point for commercial application.

Experimental Setup
The 2001-2002 MSU perennial growth retardant trial was conducted from February through April 2002 and included nine perennial species and five growth retardants. The protocol was to use a high rate and apply each of the five growth retardants to all species every week, from forcing until flowering. The growth retardants and rates used were as follows:

- A-Rest (100 ppm)
- B-Nine (5,000 ppm)
- Bonzi (90 ppm)
- Cycocel (1,500 ppm)
- Sumagic (15 ppm)

Upon arrival, plants were placed in a cold frame and naturally cooled for 14 weeks. On February 18, all plants were transplanted into five-inch pots and grown in a greenhouse at 68°F (20°C) under a 16-hour photoperiod provided by morning and evening lighting at 230 to 380 footcandles (30 to 50 μmol·m⁻²·s⁻¹) from high-pressure sodium lamps. Lamps were turned...
on from 6 to 8 a.m. and again from 5 to 10 p.m. There were 10 plants of each species in each treatment.

The first spray took place on February 25, and sprays were repeated every week until flowering or until a maximum of six applications was reached. The development of the untreated (control) plants was monitored, and flowering data of these plants was used to determine when sprays would be terminated on each species. The spray volume for all applications was approximately two liters per 100 square feet.

Height was measured on each plant when its first flower opened. Measurements were taken from the bench surface to the highest point on the plant. For plants that did not flower, height was measured at the end of the experiment. Height data were analyzed upon completion of the trial by comparing average heights of flowering plants within each treatment to the average of the untreated plants' and calculating the height reduction percentage caused by the growth retardant. After analyzing the height reduction percentage of each species, we categorized each growth retardant as being effective, slightly effective, or ineffective, based on reduction in final plant height. A reduction of 0% to 10% was ineffective, 10% to 20% was slightly effective, and more than 20% was effective.

What We Observed

No single growth retardant con-
ClearSpan® Pro II & Gothic Style Professional Greenhouses
FREE SHIPPING!
FREE WITH BUILDING
103431-103432:
• Corrugated plastic & end framing kit
• Heavy duty ground cover, with staples, controls weeds without the use of herbicides
• Complete with heater, exhaust fan, shutters, horizontal airflow circulation fan & inflation fan

103430:
• Earth anchor system
• Moisture & weed barrier flooring system
• End roll-up assembly & double-zippered door
• 2 greenhouse shelf units
• Rip-stop polyethylene cover with 5 year warranty

Email us for our 2004 catalog. — new catalog.

92795 $0.00 2 or more
$5195.00
50595.00 2 or more
103431-12'W x 12'H x 48'L
$5195.00
$4995.00 2 or more
103432-30'W x 12'H x 96'L
$599.00
$559.00 2 or more
103430-12'W x 8'H x 20'L

OPEN ACCOUNT

FACTORY DIRECT • GUARANTEED IMMEDIATE DELIVERY
To Order Call Toll Free: 1-800-603-4445
toll free: 1-800-457-8887 email: sales@clearspan.com
website: www.clearspan.com mention code: F15611

INCREASE YOUR PRODUCTIVITY WITH

ADD-A-VEYOR
QUALITY CONVEYORS WORLD WIDE

"ADD-A-VEYOR" has saved us thousands of dollars in labor cost!
Jose Costa
Costa Nursery Farms, Inc
1-800-327-7074

SHOULDN'T YOU SAVE ON LABOR COST TOO?
CALL TODAY
1-800-229-3908
CHRIS INDUSTRIES CORP
Since 1980
2655 6th Ave. S., St. Petersburg, FL 33712
Fax (727) 321-9364

For Details Circle No. 32 on Postcard
For Details Circle No. 22 on Postcard or at www.greenhousegrower.com

Figure 5. Effect of growth retardants on plant height and flowering of Hibiscus moscheutos 'Disco Belle Mixed.' Bonzi, B-Nine, and Sumagic were most effective, but also delayed flowering. Figure 6. A-Rest, Bonzi, and Sumagic were effective at controlling petiole length (and therefore height) of hosta, but they must be applied when the shoots just start to emerge to be effective.

Figure 7. Effect of growth retardants on plant height and flowering of Malva alcea 'Pink Mallow.' Bonzi, Cycocel, and Sumagic were all very effective and delayed flowering by at least four days.
PERENNIALS

SERIES

Young Plants of Bromeliaceae

the Southern United States, or for all growers in the heat of the summer, the rates we used in our trials may be more appropriate.

Early application of growth retardants is important for effective height control of some herbaceous perennials, especially species that bolt with a tall flowering spike (e.g., echinacea, Figure 2). For species like these, the first growth retardant application must be applied just as the spike begins to elongate (before it is one inch long). Flower spikes elongate rapidly, and delayed applications for even a few days can result in several inches of undesired height.

For many herbaceous perennials, growth retardants delay flowering when applied at a rate that controls height sufficiently. If you do not have specific experience with a particular crop and growth retardant, it is probably best to expect some delay, especially if the crop needs to be in flower on a specific date.

Effectiveness of growth retardants are influenced by many factors in addition to sensitivity of the plant, including temperature and application volume. We encourage growers to experiment, using our results to select a growth retardant as a starting point and adjusting rates and number of applications to determine the best strategy for their own growing conditions.

About the authors: Mike Olrich and David Joeright are technicians, Erik Runkle is an assistant professor and extension specialist, and Royal Heins and Arthur Cameron are professors, Department of Horticulture, Michigan State University, East Lansing, MI 48824.