Pot plant growers have proved MSU's cool days/warm nights work with Easter lilies and poinsettias. Bedding plant growers are next in line.

Do cool days/warm nights work with plugs?
You bet!

Controlling height of plants grown in plugs with temperature

by John E. Erwin, Royal D. Heins, William H. Carlson and John Biernbaum

The plug industry is a rapidly growing sector of the bedding plant industry. Production of high quality plugs requires technical expertise in controlling plant growth from seed germination through transplanting. Research at Michigan State University is showing how control of plug height and development rate is possible through manipulating day and night temperatures.

Using cool day/warm night technology to control plug height is successful, as indicated by these photos of salvia, dusty miller, geranium and impatiens. For compact plugs on the left, day temperatures—15 degrees C (59 degrees F)—and night temperatures—25 degrees C (77 degrees F)—combined to give a negative DIF of minus 18 degrees F. Taller plants on the right had 59-degree F days and 77-degree F nights, experiencing an 18-degree F positive DIF.
Versatile Redwood Woven Lathing

Effective Shade Control.
Ideal protection against frost and wind damage.
Gives uniform sun and moisture control. No stretching or tearing.
Long-lasting. Simple construction. 55% shade density.

Economical Pot Benches.
Assembles in minutes! Stays clean. Dry.
Allows good moisture control. Plants stay healthier because problems with mildew, fungus, snails and slugs are eliminated.
55% closed area, 45% open space for drainage.
Only 1-1/4” space between pickets.

Redwood lathing is made from specially selected grade “A” or better redwood pickets (3/8” thick by 1-1/2” wide) woven securely with seven twisted cables of galvanized wire for 6' width (five for 4’ width). Lathing is hot-dipped in oxide stain to insure weather-resistance and durability. Do not confuse this product with snow fencing and its much wider spacing—over 2-1/4” apart. Write for prices.

Southeastern Wood Products Co
P.O. Box 113/Griffin, Georgia 30224/Phone: (404) 227-7486
outside GA-(800)-722-7486
Rapid Reply Card No. 285

A two-hour drop in temperature at sunrise is almost as effective in reducing plant height as dropping the day temperature all day.

We have reported several times during the past two years how day and night temperature influences stem elongation and plant height. To summarize, plant height at maturity increases as day temperature (DT) increases; plant height at maturity decreases as night temperature (NT) increases.

More important than a particular DT or NT is the relationship between DT and NT. We have developed a term called “DIF,” day temperature minus night temperature. When day temperature is less than night temperature, DIF is negative. In contrast, when day temperature is greater than night temperature, DIF is positive. As DIF increases from a negative to a positive number, plant elongation and height increase.

Most of our reported research on DIF has dealt with crops like Easter lilies, chrysanthemums and poinsettias. This article reports on our experiences using DIF on bedding plant plugs.

Negative DIFs reduce plug height
Research to date has shown that DIF can be used as a tool to control plant height in plugs. The figures accompanying this article show responses of geranium, dusty miller, impatiens and salvia to a two-week period with a cool day/warm night (positive DIF). In all cases, plant height was reduced by a negative DIF.

We determined that a two-hour drop in temperature immediately at sunrise is almost as effective in reducing Easter lily plant height as dropping day temperature all day. We have no data yet...
on how effective a two-hour morning temperature dip is on plants grown in plugs. But, we believe bedding plants will also respond to a morning low temperature pulse.

So the cool day/warm night concept works on plants when grown in plugs. Not only have we observed the DIF response in our research, but several plug growers have also reported that they have successfully used DIF to help control plug plant height.

Small DIFs prevent chlorosis
Cautions are necessary when using a negative DIF. In addition to reducing plant height, chlorophyll is reduced in the expanding leaves of plants exposed to a negative DIF. This reduction appears as foliar chlorosis or a yellowing of the young, immature leaves.

On larger plants, such as lilies or mums, chlorosis normally is not severe and not a problem, as mature leaves have enough chlorophyll to support photosynthesis for proper growth. In addition, chlorosis is normally only temporary as the young leaves “green up” as they mature.

On seedlings, a negative DIF greater than 5 to 10 degrees F can cause severe chlorosis of all leaves as young seedlings don’t have mature leaves. Such chlorosis can reduce photosynthesis and delay plug development.

Therefore, we don’t recommend seedlings younger than one to three weeks old be grown with a negative DIF of more than about minus 2 to minus 3 degrees F. As seedlings mature, DIF can become more negative to control height further if a separate environment is available to separate small seedlings from more mature seedlings.

While the chlorosis shown in the accompanying photo is real, we caution growers not to overreact by not considering using DIF for height control. The plants pictured were exposed to a DT 18 degrees F cooler than the NT. This is a very large negative DIF.

All our studies show a greater reduction in plant height when temperatures

The Cold Fog cooling system. . .
clearly number 1 in fog systems!

PROPROPAGATION . . .
Precise, uniform temperature and humidity control — that’s the key to producing just the right propagation environment for successful growing. And that’s the COLD FOG advantage! You’ll benefit from faster rooting, higher yields and overall finer quality plants.

ENVIRONMENT CONTROL . . .
With a unique design — based on the industry’s first two-filter impingement-type nozzle — COLD FOG produces uniform fog precisely to specification. The super-fine, average 10-micron-sized water droplets evaporate easily, pulling heat from the environment for cooling and quickly adding high humidity when needed for growing and freeze protection.

RELIABILITY . . .
The COLD FOG system is easy to install and very reliable. A genuine workhorse, the industrial grade, quiet-running pumps are completely enclosed in a stainless steel shell and are available in three sizes: 3, 10 and 25 GPM. The complete system includes pump, filtration, chemical injection, temperature control, pipe, nozzles and a comprehensive manual.

SERVICE COMMITMENT . . .
A satisfied customer’s comment best expresses our concern for your success: “. . . Atomizing Systems has the technology and service commitment you can count on, long term!” All this, plus a full two-year warranty on all parts including nozzles . . . clearly COLD FOG is number 1!

ATOMIZING SYSTEMS, INC.
1 hollywood avenue, ho-ho-kus, n.j. 07423 usa
201-447-1222 • telex 133 529 ATOMIZING
To prevent chlorosis, one- to three-week-old seedlings need small negative DIFs.

are changed from a positive DIF to a zero DIF than from a zero DIF to a negative DIF. Therefore, growers can get significant height control by changing from positive DIF to zero DIF temperatures without a delay in plant development due to chlorosis.

Positive to negative DIF switches slow growth
The second caution relates to the potential of slower growth when a grower changes from being a “positive DIF grower” to a “negative DIF grower.” The slower growth has nothing to do with the chlorosis described above.

Instead, if NTs are not increased when the DT is lowered, the 24-hour average temperature will be lower. Since growth of vegetative plants, including plugs, is primarily controlled by 24-hour average temperature, a reduction in average temperature will slow growth.

Growers of all crops should be aware of this potential problem when chang-

Exposing plants to a negative DIF reduces both plant height and leaf chlorophyll content. For seedlings, negative DIFs greater than 5 to 10 degrees F cause severe chlorosis. Salvia grown with a negative DIF of minus 18 degrees F are obviously chlorotic compared to plugs grown with a positive DIF. Growth temperatures are 15 degrees C (69 degrees F) and 25 degrees C (77 degrees F).
GREENHOUSE ENVIRONMENT CONTROLS:

The One That's Better for Today and Best for Tomorrow.

- Greenhouse Environment Control Computers
- Irrigation Controllers
- CO₂ Monitors and Controllers
- Full Line of Sensors and Analyzers
- System Design Services and Support

Our system is modular, so it's easily expandable, and adaptable to any greenhouse operation. It's durable and built to last. This means it's the most cost-effective control system available.

COMPARE BEFORE YOU BUY.

For over 30 years, Hoppmann Corporation has been answering client needs in automation, communication, and controlled-environment agriculture.

Call toll-free 1-800-368-3582 for brochure.

EGOR®
Environmental Greenhouse Operator and Reporter

Rapid Reply Card No. 271

Plug growers have successfully used cool days/warm nights to control plug height.

Growth retardants plus DIF give best control

A third caution relates to possible problems that may occur if DIF is the only height control method used. Once applied, a growth retardant continues to exert its influence until it wears off. Unfortunately, it may not wear off until some time after the plug has been transplanted. Consequently, a grower loses some control of the crop.

In contrast to a growth retardant, growers can increase or decrease stem elongation rate as quickly or as often as they wish by using DIF. This definitely is an advantage of using DIF to control plant height. The problem comes if outside weather conditions prevent DT control. Without any growth regulator, the loss of a negative DIF can result in rapid stem growth. We suggest using low levels of growth retardants in combination with a negative or zero DIF for height control. Then, if DIF control is lost, excessively rapid elongation won't occur.

We believe that manipulation of DT and NT can be a very useful tool in the production of plug transplants. We will continue our research this spring to further expand our understanding of height control in plants grown in plugs using the DIF concept.

Information presented in this article is a result of projects funded in part by the American Floral Endowment, the Fred O. Glocckner Foundation and commercial greenhouse growers.

John Erwin, doctoral student, Royal Heins, associate professor, William Carlson, professor, and John Biernbaum, assistant professor, are in the Department of Horticulture, Michigan State University, East Lansing.